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Abstract. We perform an adjustment to the most recent structure function data, considering the QCD
dipole picture applied to the ep scattering. The structure function F2 at small x and intermediate Q2

can be described by the model containing an economical number of free parameters, which encodes the
hard-pomeron physics. The structure function FL and the gluon distribution are predicted without further
adjustments. The data description is remarkably good, however giving a rather low value for the fixed
strong-coupling constant. This indicates that a resummed next-to-leading–level analysis should be done,
which would bring it to suitable values.

PACS. 13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes) – 12.38.Bx Pertur-
bative calculations

1 Introduction

Deep inelastic electron-proton scattering experiments at
HERA have provided measurements of the inclusive struc-
ture function F2(x,Q2) in very small values of the Bjorken
variable x (10−2 down to 10−5). In these processes the
proton target is analyzed by a hard probe with virtuality
Q2 = −q2, where x ∼ Q2/2p · q and p, q are the four-
momenta of the incoming proton and the virtual-photon
probe. In that kinematical region, the gluon is the leading
parton driving the small x behavior of the deep inelas-
tic observables. The small x region is described in a for-
mal way using the summation of gluon ladder diagrams,
whose virtual contributions lead to the gluon reggeization.
Such ladder diagrams are associated with the pomeron,
the leading reggeon with the vacuum quantum numbers,
which was introduced phenomenologically to describe the
high-energy behavior of the total and elastic cross-sections
of the hadronic reactions and connected with the existence
of large rapidity gaps in the produced final state [1].

At the leading order (LO) all powers of αs ln(Q2/µ2),
with µ2 the factorization scale, are summed by the
DGLAP evolution equations [2], which take into account
only the strongly ordered parton transverse-momenta
(kT ) ladders. At present, the next-to-leading–order (NLO)
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contribution is also considered, including non-ordered
kT contributions in a covariant way. In the current
HERA kinematical regime the DGLAP approach is
quite successful, although the theoretical expectation of
deviations due to the parton saturation phenomena could
be present [3]. Following this point of view, recently the
structure function measured at HERA has been studied
considering an analysis based on the first non-linear
corrections to the DGLAP evolution [4], showing for the
gluon distribution that the non-linear effects play an
increasingly role at x ≤ 10−3 and Q2 ≤ 10 GeV2. The
procedure gives stable results for that distribution at both
low x and Q2, instead of negative or constant values as
in the recent NLO DGLAP analysis (see [4] for details).

On the other hand, at very small x the leading loga-
rithms αs ln(1/x) are shown to be important. In the lead-
ing logarithmic approximation (LLA) the QCD pomeron
corresponds to the sum of ladder diagrams with reggeized
gluons along the chain, which are strongly ordered in mo-
mentum fraction x. Such sum is described by the Balitzkij-
Fadin-Kuraev-Lipatov (BFKL) equation [5]. The correc-
tions at next-to-leading level (NLLA) are now known,
leading to strong modifications in the LLA spectrum [6].
At first glance, the results turned out conflicting and
not useful for suitable phenomenological studies. Further,
these features have been cured by canceling non-desired
singularities via a suitable resummation at all orders of
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the perturbative expansion, satisfying the renormalization
group requirements [7–9]. The main shortcoming in do-
ing phenomenology with a BFKL evolution beyond the
leading order is the complicated mismatch between QCD
perturbative and non-perturbative inputs, as the corre-
sponding factorization properties are more involved than
the DGLAP evolution.

A very promising approach encoding all order
αs ln(1/x) resummation is provided by the QCD dipole
picture. It was proven that such approach reproduces the
BFKL evolution [10]. The main process is the onium-
onium scattering, that is the reaction between two heavy
quark-antiquark states, in such a way that the process is
perturbative since the onium radius provides the essential
scale at which the strong-coupling constant is evaluated.
In the large-Nc limit, the heavy pair and the soft gluons
are represented as a collection of color dipoles. The cross-
section is written as a convolution between the number
of the dipoles in each onium state and the basic cross-
section for dipole-dipole scattering due to two-gluon ex-
change. The QCD dipole model can be applied to deep
inelastic lepton-nucleon scattering, assuming that the vir-
tual photon at high Q2 can be described by an onium.
On the other hand, the proton is approximately described
by a collection of onia with an average onium radius to
be determined from phenomenology. This model has pro-
duced a successful description of the old structure function
data [11].

The QCD dipole picture allows a systematic frame-
work for testing the resummed next-to-leading–order
BFKL evolution kernels, producing predictions for the
proton structure function. A method for doing this was
recently proposed [12], where the resummation schemes
are tested through the Mellin transformed j-moments of
F2. Moreover, it has been shown that a geometric scaling
for the photon-proton cross-section and the symmetry be-
tween low- and high-Q2 regions are associated to the sym-
metry of the two-gluon dipole-dipole cross-section [13].
There, the proton is assumed to be a collection of inde-
pendent dipoles at the time of the interaction whose sizes
are distributed around 1/Qs(x), with the latter being also
the mean distance between the centers of the neighboring
dipole. The quantity Q2

s(x) = Λ2 eλ log (1/x) is the satura-
tion scale [14]. Further, it was shown that the local geo-
metric scale can be testable experimentally [15]. That is,
the cross-sections for exclusive processes only depend on
the ratio of scales Q/Qs(x, b), where now the saturation
scale Q2

s(x, b) has an impact parameter (b) dependence.

In this work we revisit the phenomenology using this
successful approach. The analysis is organized as follows.
In the next section we shortly review the main formulae
for the QCD dipole picture and give the phenomenological
expressions for the structure functions and for the gluon
distribution. In sect. 3 we analyze the fitting procedure to
the recent structure function data, determining the quality
of the fit procedure and the range of applicability of the
model. In the last section we draw the main conclusions
and summarize the results.

2 The QCD color dipole picture and structure
functions

Let us start by describing the main features and basic for-
mulas of the QCD dipole picture at high energies. The
forward amplitude, A (s, t), for the onium-onium scater-
ring, integrated over impact parameter is written as

A (s, t = 0) = − i

∫
d2r1 d2r2

∫
dz1 dz2

×Φ(0) (r1, z1)Φ(0) (r2, z2)

×
∫

d2s1

s1

d2s2

s2
n (Y/2, r1, s1)

×n (Y/2, r2, s2)σdd (s1, s2) , (1)

where Φ(0)(ri, zi) is the squared wave function of the
quark-antiquark part of the onium wave function, ri be-
ing the transverse size of the quark-antiquark pair and
zi the longitudinal momentum fraction of the antiquark.
The rapidity is given by Y/2 � ln(x0/x), where x0 is
a phenomenological constant and x is the Bjorken vari-
able labelling the softer end of the produced dipole. The
dipole density is labeled as n (Y/2, ri, si), which is dis-
cussed below. The quantity σdd is the elementary dipole-
dipole cross-section and reads as

σdd (s1, s2) = 2π α2
s [min (s1, s2)]2

×
[
1 − ln

(
max (s1, s2)
min (s1, s2)

)]
. (2)

In the large-Nc limit and in the leading logarithmic
approximation the radiative corrections are generated by
emission of gluons with strongly ordered longitudinal mo-
menta fractions zi � zi+1. The onium wave function with
n soft gluons can be calculated using perturbative QCD.
In the Coulomb gauge the soft radiation can be viewed as
a cascade of color dipoles emitted from the initial dipole,
since each gluon acts like a quark-antiquark pair. The
dipole density n(Y, r, s) was defined [10] in such way,

N (Y, s) =
∫

dz
∫

d2r Φ(0)(r, z) n(Y, r, s) (3)

is the number of dipoles of transverse size s with the
smallest light-cone momentum in the pair greater than or
equal to e−Y p+, where p+ is the light-cone momentum of
the onium. The whole dipole cascade can be constructed
from a repeated action of a kernel K on the initial density
n0 (r, s) through the dipole evolution equation,

n (Y, r, s1) = n0 (r, s1)

+
∫ Y

0

dy
∫ ∞

0

ds2 K (s1, s2)n (y, r, s2) . (4)

The evolution kernel K is calculated in perturbative
QCD. For fixed αs and in the limit of large Nc the kernel
has the same spectrum as the BFKL kernel [10]. Therefore,
the two approaches lead to the same phenomenological
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results for inclusive observables. The solution of eq. (4) is
given by [10]

n (Y, r, s) =
1
2

r

s

exp (ωIP Y )√
7π ᾱs ζ(3)Y

exp
(
− ln2 (r/s)

28 ᾱs ζ(3)Y

)
,

(5)
where ωIP = 4 ᾱs ln 2, with ᾱs = αsNc/π, and αIP =
1 + ωIP is the pomeron intercept. Therefore, the cross-
section grows rapidly with the energy since the number of
dipoles in the light-cone wave function grows rapidly on
energy. The result in eq. (5) has been obtained consider-
ing a process having only one scale, that is the onium ra-
dius. In the electron-proton deep inelastic scattering two
scales are present and this result should be affected by
non-perturbative contributions. The hard scale is given
by the photon virtuality and the soft one is associated to
the proton typical size.

Now, let us review the obtention of the proton struc-
ture functions in the QCD dipole picture. In order to do
so, an assumption is made that the proton can be ap-
proximately described by onium configurations. The basic
assumption is given by

σγ p
L,T (x,Q2) = σγ onium

L,T (x,Q2,k2;µ2
F ) ñ (k2;µ2

F ) , (6)

where ñ (k2; µ2
F ) is the probability of finding an onium

in the proton, with µ2
F being an unknown perturbative

scale characterizing the average onium size, as will be seen
later on. We follow refs. [11] to write down the virtual
photon-onium cross-section, where the kT -factorization
approach [16] was considered within the framework of the
QCD dipole model. It reads as

σγ onium (x,Q2) =
∫

d2r dz Φ(0) (r, z) σγ-dipole (x,Q2, r) ,

(7)
where Φ(0) (r, z) was already defined before. The virtual
photon-dipole cross-section is written as

Q2 σγ-dipole (x,Q2, r) =∫ Q2

d2k

∫ 1

0

dz
z

σγ g

(
x

z
,

k2

Q2

)
Fonium (z,k, r) , (8)

where σγ g/Q
2 is the Born cross-section of an off-shell

gluon of transverse momentum k in the the subprocess
γ∗g → qq and Fonium is the unintegrated gluon distribu-
tion function of an onium state of size r, containing the
hard-pomeron physics. The relation between this quantity
and the dipole density is written as

k2 Fonium (z,k, r) =∫
ds2

s2

∫ 1

0

dz′

z′
n (z′, r, s) σγ-dipole

( z

z′
, (s k)2

)
, (9)

where n (z′, r, s) is the density of dipoles of transverse size
s with the smallest light-cone momentum in the pair equal
to z′p+ in a dipole of transverse size r, of total momentum
p+. This is given by the solution in eq. (5).

The next step is to apply a Mellin transform in the
x-space and further a second Mellin transform in the k2-
space, where the conjugated variables are ω and γ, respec-
tively. After that, one obtains [11]

Q2 σγ-dipole (x,Q2, r) =
∫

dω

2 i π

∫
d γ

2 i π
×σγ g (ω, 1 − γ)Fonium (ω, γ) (Q2 r2)γ x−ω . (10)

The unintegrated gluon distribution for an onium of
size r can be obtained from perturbative QCD and it is
written as [10]

Fonium (ω, γ) = ᾱs
1
γ

ν (γ)
ω − ᾱs χ (γ)

, (11)

where in the leading-order BFKL approach χLO(γ) =
2ψ(1) − ψ (γ) − ψ (1 − γ) and ᾱs χ (γ) is the eigenvalue
of the LO BFKL kernel. The Mellin transform of the
gluon-dipole coupling, ν (γ), can be obtained from the kT -
factorization approach as,

ν (γ) =
2− 2γ−1

γ

Γ (1 − γ)
Γ (1 − γ)

. (12)

The unintegrated gluon distribution, eq. (11), has a
pole at ωIP = ᾱs χ (γ) and then the integration over ω can
be done analytically. Furthermore, the cross-section σγ g

can be written in function of the LO photon impact factors
hL, T (γ), corresponding to the perturbative coupling to
the photon. Namely, σγ g ≡ 4π2 αem e2

f hL, T (γ), with e2
f

being the total charge of the quarks flavor contributing to
the reaction and where,

(
hT

hL

)
=

ᾱs

9 γ
[Γ (1 − γ)Γ (1 + γ) ]3

Γ (2 − 2γ)Γ (2 + 2γ)
1

1 − 2
3 γ

×
(

(1 + γ) (1 − γ
2 )

γ (1 − γ)

)
, (13)

Putting eqs. (13) and (11) in eq. (10) and solving an-
alytically on ω for the pole on ω = ωIP , one obtains

Q2 σγ-dipole (x,Q2, r) = 8π2 αem e2
f ᾱs

∫
dγ
2πi

hL,T (γ)

× ν (γ)
γ

(
r2 Q2

)γ
exp

[
ᾱs χ (γ) ln

x0

x

]
. (14)

The virtual photon-onium cross-section is obtained re-
placing eq. (14) in eq. (7). The result depends on the
squared wave function Φ(0) of the onium state, which can-
not be computed perturbatively. This is solved by elim-
inating that dependence through an averaging over the
wave function of transverse size [11],

(µ2
F )− γ = 〈r2〉 ≡

∫
dz d2r (r2)γ Φ(0) (r, z) , (15)

where µ2
F is a scale which is assumed to be perturbative.

With this result, the photon-onium cross-section, eq. (7),
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takes the following form:

σγ onium (x,Q2) =
4π2 αem

Q2
2 ᾱs

∫
dγ
2πi

hL,T (γ)

×ν (γ)
γ

(
Q2

µ2
F

)γ

exp
[
ᾱs χ (γ) ln

x0

x

]
. (16)

In order to compute the photon-proton cross-section
one needs to know the probability of finding an onium in
it, ñ (γ; µ2

F ). Relying on renormalization group properties,
namely the overall result should be independent of the
scale perturbative µ2

F , a suitable ansatz is given by [11]

ñ (γ; µ2
F ) = neff (γ)

(
µ2

F

Q2
0

)γ

, (17)

where Q2
0 is interpreted as a characteristic non-

perturbative scale of the hadron-onium scattering. The
quantity neff means the average number of primary dipoles
in the proton and r0 ≡ 2/Q0 their average transverse di-
ameter (see second reference in [11]). Placing the ansatz
eq. (17) in eq. (6) and using the result on eq. (16), the
proton structure functions can be calculated. The in-
tegration over γ can be performed using the steepest-
descent method, with the saddle point given by χ′ (γs) =
− ln(Q2/Q2

0)/ᾱs ln(x0/x). Using the expansion of the
BFKL kernel near γ = 1

2 , one obtains

γs =
1
2

[
1 − κ (x) ln

(
Q

Q0

)]
, (18)

where κ (x) = [ᾱs 7 ζ(3) ln x0
x ]−1 is the diffusion coeffi-

cient at rapidity Y = ln (x0/x). Putting all together, the
structure functions are written in the simple form [11]

FT, L (x,Q2) = HT, L

ᾱs π
3 e2

f neff

96

( x0

x

)ωIP

× Q

Q0

√
2κ (x)/π exp

[
−κ (x)

2
ln2 Q

Q0

]
, (19)

where HT = 9/2 and HL = 1, defining neff ≡ neff (γs) and
r0 ≡ r0 (γs). In the next section we consider the equa-
tion above to determine the parameters of the model by
fitting the recent data on the proton structure function
F2 = FT + FL. The conditions to obtain the structure
functions from the saddle point method fix the conditions
of its safe applicability. Hence, the following bound should
be covered:

κ (x) ln
(

Q

Q0

)
�

ln
(

Q
Q0

)
ln

(
x0
x

) � 1 , (20)

which is realized for the region of moderate Q/Q0 when
compared to the range of x0/x. It is worth mentioning that
at higher Q2, the DLLA becomes valid, with the pole now
at 1/γ in the kernel χ (γ).

Table 1. Parameters of the fit for the H1 data analysis.

Parameter I II III
Np 0.0625 0.0767 0.0985

QCD dipole Q0 0.464 0.544 0.587
x0 1.90 1.0 (fixed) 1.0 (fixed)

1 + ωIP 1.25 1.26 1.23
AR 1.10 1.23 –
aR −0.198 −1.01 –

Non-singlet d −1.16 −0.416 –
b −0.482 −0.007 –

χ2/d.o.f. 1.26 1.25 1.02

3 Fitting results and discussions

In this section we will perform a fitting procedure us-
ing the recent HERA data on the proton structure func-
tion [17,18] using the QCD dipole picture given by
eq. (19). Having determined the parameters of the model
from data, the longitudinal structure function and the pro-
ton gluon distribution are calculated without further ad-
justments. We made a simple attempt to describe phe-
nomenologically the charm structure function, although
the full expressions for it are known in the literature (last
reference in [11]).

For the sake of simplicity, we have defined the over-
all normalization for the proton structure function, Np =
(HT + HL) ᾱsπ

3e2
f neff/96. Also, for some fitting pro-

cedures we will include a non-singlet contribution and
threshold (large x) effects. Namely, the hard-pomeron ex-
pression, eq. (19), is multiplied by the factor (1 − x)ns ,
while the non-pomeron contribution is multiplied by (1−
x)nns . The expressions for the non-singlet piece and ns, ns

read as,

Fns
2 (x,Q2) = ARx

1−αR

(
Q2

Q2 + aR

)αR

(1 − x)nns(Q2) (21)

nns(Q2) =
3
2

(
1 +

Q2

Q2 + d

)
,

ns(Q2) =
7
2

(
1 +

Q2

Q2 + b

)
, (22)

where αR = 0.4 is the reggeon intercept, considered fixed
in this analysis. Other values can be considered, however
the χ2 quality of the fit is worst.

Here, we have considered the following fitting proce-
dures:

– (I) Adjusting data in the whole range 1.5 ≤ Q2 ≤ 150
GeV2 and all x, considering the QCD dipole, eq. (19),
plus the non-singlet contribution, eq. (21). The moti-
vation is to include the large-x data at high Q2, where
the fixed target data (E665 and NMC points [19,20])
were also added. The results for H1 and ZEUS data
sets are presented in tables 1 and 2. The number of
points is equal to 230 (H1) and 259 (ZEUS), respec-
tively. The total number of parameters is 7.
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Fig. 1. The inclusive structure function F2 for the H1 data set [17] and fixed target data points [19,20]. The curve corresponds
to procedure (II).

Table 2. Parameters of the fit for the ZEUS data analysis.

Parameter I II III
Np 0.0581 0.0638 0.0977

QCD dipole Q0 0.475 0.517 0.571
x0 1.30 1.0 (fixed) 1.0 (fixed)

1 + ωIP 1.28 1.29 1.24
AR 1.42 1.43 –
aR 0.383 −0.273 –

Non-singlet d −0.842 −0.808 –
b 1.36 −0.677 –

χ2/d.o.f. 1.27 1.25 1.08

– (II) Adjusting data in the range 1.5 ≤ Q2 ≤ 60 GeV2

and all x, considering the QCD dipole plus the non-
singlet contribution. We have fixed the parameter x0 =
1 in this case, reducing the final number of parameters.
The results for H1 and ZEUS data sets are presented
in tables 1 and 2.

– (III) Adjusting data in the whole range 1.5 ≤ Q2 ≤ 150
GeV2 and restricting to the small region x ≤ 10−2,
considering only the QCD dipole contribution. We
have considered the fixed values x0 = 1 and ns = 7.

Let us start discussing procedure (I). The main dif-
ference between the two data sets are the values for the
parameter x0, being larger for ZEUS than for H1. On the
other hand, the effective intercept for the hard QCD con-
tributions is quite the same, that is 1+ωIP = 1.25 (8), with
the quality of fit better for ZEUS data set. It is worth men-
tioning that the low values obtained for the parameters b
and d suggests that they can be fixed in the usual way,
ns = 7 and nns = 3, in the range considered here. This
procedure would reduce strongly the number of free pa-
rameters. From the fit, it is also clear that the non-singlet
piece is Q2 independent, since aR is quite small.

For procedure (II), the picture is similar to the pre-
vious one, with the effective intercept 1 + ωIP = 1.26 (9)
coming out different for the two data sets. The quality of
fit is also slightly equal in the two cases (see tables). The
conclusion about ns, ns is the same as the procedure (I).

Finally, in procedure (III) we have considered only the
small x ≤ 10−2 data (102 data points for H1 and 107
for ZEUS). In this case, x0 = 1 and ns = 7 are taken
as fixed, reducing the number of parameters equal to 3.
Indeed, their values are to a large extent similar with a
better quality of fit for the H1 data set. This procedure is
similar to the previous analysis in refs. [11], with an even
lower effective power (1 + ωIP � 1.282 in [11]). The low
value for the fixed coupling constant αs � 0.1 reveals the
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Fig. 2. The inclusive structure function F2 for the ZEUS data set [18] and fixed target data points [19,20]. The curve corresponds
to procedure (II).

well-known necessity of sizeable higher-order corrections
to the approach. An accurate analysis along these lines,
considering resummed NLO BFKL kernels, has been pro-
posed recently [12] producing a reasonable αs ∼ 0.2 for the
typical Q2 range considered in phenomenology for struc-
ture functions.

In order to illustrate the analysis, in figs. 1 and 2 we
present the fit result (procedure (II)) for the inclusive
structure function for H1 [17] and ZEUS [18] data set,
including the fixed target points [19,20] and extrapolated
up to Q2 = 150 GeV2. It is worth mentioning that the
new data are more precise than the previous analysis and
the same quality of fit is obtained in a small range of Q2,
in contrast with the studies in [11]. However, a rough data
description can be obtained up to higher values. Here, our
aim is to discuss the model as the quality of fit. We have
checked using the new H1 data that a χ2/d.o.f. = 1.4
is obtained in the range 1.5 ≤ Q2 ≤ 150 for all x. This
to some extent shows the range of virtuality where a LO

BFKL approach is suitable. That is, low x and not so
high Q2. In virtualities of hundreds of GeV, the physics
should be described by the DLA limit of the BFKL ap-
proach and which is a common limit also in the DGLAP
evolution [21]. An interesting further study is to realize
a best-fit test to the DLA limit, determining its range
of applicability. After this discussion, having determined
the parameters of the model from data on F2, it is possi-
ble determine without further adjustments the structure
function FL and the gluon distribution xG(x,Q2). From
eq. (19) and the definition of the overall normalization, we
can see that FL = (2/11)F2, since HT + HL = 11/2 and
HL = 1. In fig. 3 this result is shown using parameters
from procedure (II) from the H1 data set against the re-
cent FL data [17]. The results are in good agreement with
the recent data, obtained without further adjustments.

We made an attempt to describe phenomenologically
the charm structure function, despite explicit expressions
for it to be available. One supposes the following relation
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Fig. 3. The longitudinal structure function FL [17], where the
parameters of procedure (II) (H1 data set) were taken into
account and considering FL = (2/11)F2.

between the F2 structure function and F cc̄
2 :

F cc̄
2 (x,Q2) =

2
5

(
1 +

4m2
c

Q2

)−1

F2 (x,Q2) , (23)

where we have used mc = 1.5 GeV and the factor 2/5 cor-
responds to e2

c/(
∑

e2
f + e2

c) . The result is shown in fig. 4,
where the parameters from procedure (II) (ZEUS data set)
were taken into account. The simple ansatz is reasonable
only at low Q2, overestimating the data on higher virtual-
ities. It should be stressed that this function can be calcu-
lated using the complete expressions for the photon impact
factors, hT,L (γ;mf ), which consider also the dependence
on the quark masses, mf (see last reference in [11]).

As a final analysis, in the QCD dipole approach the
gluon distribution function can be calculated in a straight-
forward way from F2. The result is also independent of
the overall normalization, which contains part of the non-
perturbative inputs of the model. The gluon function is
given by

xG(x,Q2) = [hT (γ = γs) + hL (γ = γs)]
−1

F2(x,Q2) ,

=
9 γs

ᾱs

1 − 2
3 γs

1 + 3
2 γs − 3

2 γ
2
s

×Γ (2 − 2 γs)Γ (2 + 2 γs)
[Γ (1 − γs)Γ (1 + γs) ]3

F2(x,Q2) . (24)

In fig. 5 we show the gluon distribution function ob-
tained using eq. (24) and the parameters of procedure (III)
for the H1 and ZEUS data sets. The curves represent
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Fig. 5. The gluon distribution function x G(x, Q2), where the
parameters of procedure (III) were taken into account. In the
plot on the left, parameters from the H1 data set fit and on
the right the ZEUS data set fit.

xG(x,Q2) as a function of x for distinct virtualities, 1.5,
15 and 150 GeV2. It would be timely to compare those
curves with the ones from using a resummed kernel. In or-
der to compare these predictions with NLO QCD DGLAP
fit results, in fig. 6 one plots the QCD dipole predictions
with the recent QCD analysis. In the upper plot, we show
the results for the H1 QCD fit (central value, without
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Fig. 6. The gluon distribution function x G(x, Q2): comparison
among H1 and ZEUS QCD DGLAP fit and the QCD dipole
prediction.

bands) in ref. [22] for Q2 = 4 GeV2 and the earlier anal-
ysis in ref. [23]. The deviation between the recent H1 fit
and the QCD dipole curves (parameters from procedure
(III)) is sizeable, whereas it is consistent with the pre-
vious analysis. Deviations are found in the comparison
with the ZEUS NLO QCD fit [24] at Q2 = 7 GeV2, in
the lower plot. However, it should be stressed that the
gluon distribution is an indirect observable, and its deter-
mination is model dependent. For the sake of comparison
with other determinations of the gluon distribution, we
have plotted the result using the Regge-like hard-pomeron
contribution [25], which is shown in the lower plot for
Q2 = 7 GeV2. Such approach shows that the ratio of
the gluon distribution to the hard-pomeron part of the
singlet quark distribution is about 8 ± 1 in a large range
of virtualities. Furthermore, the dependence on Q2 of the
hard-pomeron contribution presents very good agreement
with the DGLAP evolution for Q2 ≥ 5 GeV2.

4 Conclusions

We have revisited the phenomenology to the structure
functions in the QCD dipole picture, performing a fit to
the recent data on the proton structure function. The
model for the hard pomeron provides a reduced number
of free parameters and the results produce a good-quality
fit. The adjusted constants are the overall normalization to
F2, the effective pomeron intercept αIP = 1+ωIP , the aver-
age transverse diameter of the primary dipoles in the pro-
ton r0 = 2/Q0 and x0 scaling the ln(1/x) behavior. More-
over, the longitudinal structure function and the gluon dis-
tribution function can be determined without further ad-
justments. The results for FL are in good agreement with
the recent measurements. The main shortcoming from the
approach is a low value for the strong-coupling constant,

αs � 011, showing that a next-to-leading–level analysis
must be performed. The number of initial dipoles is either
small, neff = 3, and they have a large size r0 � 1 fm.
Resummed perturbative kernels should provide a consis-
tent value for the strong-coupling constant in the range
of virtualities considered, as reported in ref. [12]. In this
sense, the model presented here, although providing a re-
markable data description, can be considered as effective
and further phenomenology should consider higher-order
effects. Regarding the gluon distribution, the result is dis-
tinct from the recent NLO QCD fits, producing higher
values at small x. We have also made a simple ansatz to
describe the charm structure function, obtaining a very
rough result. This is because we are disregarding the de-
pendence of the photon impact factors on the quark mass,
which modifies the final result in contrast with the as-
sumption of avoiding the quark mass.

M.V.T.M. thanks the support of the High Energy Physics
Phenomenology Group (GFPAE, IF-UFRGS) at Institute of
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